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CONSTRUCTION OF THE CREEP EQUATIONS FOR
MATERIALS WITH DIFFERENT EXTENSION AND
COMPRESSION PROPERTIES

B. V. Gorev, V. V. Rubanov, UDC 539.376
and O. V. Sosnin

Constructional materials of light alloys such as aluminum~magnesium and titanium possess different
tensile properties for tension and compression. Whereas the "instantaneous' elastoplastic properties may
differ only slightly, the difference in the properties under prolonged action (e.g., the duration up to fracture)
may reach several orders of magnitude [1]. Figure 1 shows a diagram of the creep of VT~9 titanium alloy at
a temperature of 400°C with different combinations of tension (compression) and twisting at a constant stress

0; = (02 4 31)V2 = 72.5 kg/mm?

in the form of the time~-dependence A = g¢ + 7y. The marks on the diagrams correspond to the marks of the
scheme of the stressed state of the plane ¢ —v37. It can be seen from the diagram that the intensity of the
creep process with ¢ = const decreases as the stress state changes from pure tension to pure shear and
compression. Here for comparison we show two diagrams, namely, pure tension with o5 = 71 kg/ mm®
(points 1) and twisting of a thin~walled tubular specimen with oj = 77.5 kg/mm? (points 2), the intensity of
the creep process of which is the same.* The example given clearly illustrates the need to construct a
theory which would enable one to describe creep in complex media.

One of the first attempts to describe creep in media with different resistance to tension and compres-
sion is described in [2], in which the actual stresses are replaced by "reduced" stresses, and a theory is
constructed assuming similarity between the deviators of the rates of deformation and the "reduced" stresses.
This method has not been developed any further, and in practice even simple problems lead to quite compli=-
cated equations [3].

Another approach is to construct creep equations in the form of a dependence of the "equivalent rate of
deformation” ne on the "equivalent stress” ge, where the intensity of the rate of deformation 7 =
(2/371le1 ki W2 s usually taken as ng, while o is considered as a function of the stress tensor invariants.
The creep equation is supplemented by the law of flow (e.g., by the gradient iy = kaa;/ 80kl , where cré is
not always the same as cg) {4, 5].

Attempts have been to construct equations assuming the existence of a potential creep function which
depends on the stress tensor invariants and scalar parameters of the strengths [6-13]. The potential function
is assumed to be both smooth [6-8, 12] and piecewise-smooth [9, 11, 13}, and equations have also been con~
structed with more general assumptions [14].

When constructing defining equations the different resistance to tension and compression is taken into
account by introducing info ce, in addition to the second invariant of the stress deviator, one of the odd in-
variants: In a number of papers preference is given to the first invariant of the stress tensor [6, 9, 11, 15,
16-18], while in others preference is given to the third invariant of the stress deviator [7, 8, 12, 14]. Al-
though it is not our purpose to make a more detailed review of the papers in this field, we will illustrate the
most typical approaches to constructing defining equations containing in addition either the first or third in=-
variants of the stress tensor by using the example of the creep of OT-4 titanium alloy at a temperature of
475°C and different combinations of tension-twisting and compression-twisting.

* N. G. Torshenov participated in these experiments.
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The experimental program was carried out on specimens of the same geometrical shape and dimen=~
sions in order to eliminate the possible effect of scale factors. Tubular specimens with external and internal
diameters of 20 mm and 18 mm and a length of the working part of 30 mm were made from a single bar 25
mm in diameter of OT-4 alloy. The specimens were not subjected to any thermal processing after manufac~
ture. The anisotropic properties of the material were not checked. When analyzing the experimental data we
gave particular attention fo the difference in the properties of the material in tension and compression. The
experiments were carried out on three machines in which the force and temperature modes of operation were
first checked and compared. During the experiment from the condition of incompressibility of the material
Folo = Fl at each 0.5% axial deformation of the creep we calculated the area of cross section of the specimen
F and the mean radius of cross section r = ry + Ar (here Fy and F, I and ! are the initial and current
cross-sectional area of the specimen and the lengths of its operating part, Ar = rgep = ~ry€5/2) and from
them we corrected the axial load and the tordue in order to maintain the stressed state in the specimen con-
stant. In the experiments on pure tension and also for combinations of tension and a small addition of torque
the specimens were subjected to fracture. For other combinations of the stressed state the experiment was
discontinued when indications appeared of a loss of stability in the specimen.

We will assume that the creep in the material in the steady-state stage with uniaxial Ioading can be de-
scribed by the relation

on = Bilof*, 1)
which when generalized to the case of a spatial stressed state leads to the relation
W == Byoe, W = oimi;. @)

Figure 2 shows in logarithmic coordinates the results of experiments on pure tension (the circles), pure com-
pression (the dark points), and pure twisting (the crosses); it can be seen that the index n for all three forms
of loading is the same, but ge is not the same as the intensity of these stresses ¢j. By processing the results
of these experiments using a relation of the form (1) we obtain for the tension and compression, respectively,

B, = 13.3- 10~ (kg /mm® }1-"h 1, B, = 7.5- 10~ (kg /mm?)1-"1~", n = 5. 3)
The creep equation (2), which contains in addition to the second invariant of the stress deviator (the stress

intensity) oy = ((3/2)(;;; ofd)i/z, where ¢!, = ofd — Ysonn0ki, the first invariant of the stress tensor Ij =
omy» also, can, e.g., be represented in the form

W:%[Bl(l + I,/6y) + B, (1 — I,/o)] 0%, @)
Iy o
Nit = Ky ale

with the additional limitation =1 <I;/¢j= 1 and |I;/0oi| = 1 outside this interval.

In the space of the principal stresses the surface W = const according to (4) represents two compon-
ents equally inclined to the coordinate axes of the cylinder with a transition region. When the difference in the
properties for tension and compression is reduced relation (4) reduces to the well-known relation for iso-
tropic media in accordance with Mises criterion with the associated flow law. In Fig. 3 the number 1 repre-
sents the contour W = const in the plane ¢y — gy, constructed from relation (4) with the characteristics (3).
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in Table 1 we give experimental data of the rates of deformation of the creep n = d e/dt and £ = dy/dt, cor-
responding to different combinations of ¢ and 7. In the columns 7; and &; we show the calculated values of
the rates of deformation obtained from Eq. (4). The points in Fig. 3 denote the experimenial values of W =
on+ 7y of the first seven experiments in Table 1.

By analogy with (4) we can give a generalization of the Tresk —St. Venant criterion in the form

I
W= %[31(1 + 7:;) +Bz(1 - %)]m

/

Ty, (5)
n;= k‘&'%." Tm = 0, — 03, 01 > G5 > Uy
L2

with the limitations —1 <I;/Tm =1 and |I;/7m |= 1 outside this interval.

In the space of the principal stresses the surface W = const according to (5) represents two six~sided
prisms equally inclined to the coordinate axes, comnected by a pyramidal region. When B; approaches B,
relations (5) reduce to the maximum tangential stress criterion with the associated flow law, well known for
isotropic media. In Fig. 3 the number 2 denotes the contour W = const, constructed from relation (5) with the
same characteristics (3). In columns 7, and £, in Table 1 we show the calculated values of the rates of de-
formation of the creep obtained from these relations.

An example of the creep equation the arguments of which contain the second and third invariants of the
stress deviator is

ao,
W =B [('1. + asin 3&) Gi]nv i = ks 5%?—_, O = (1 --a sin 3&) Ci, . (6)
ij

where
1/ 1/n
B/ gt/

sin 3f = — =g g
2

0 <0 &0
5 B = o (BT + B o
In the space of the principal stresses the surface W = const, according to relation (6}, is a noncircular
cylinder with an axis coinciding with the hydrostatic axis; the vector of the deformation velocity is orthogonal
to the surface W = const. As the difference between B; and B, decreases relation (6) again reduces to the
Mises criterion. In Fig. 3 the number 3 denotes the contour W = const constructed from relation (6) with
characteristics (3), and the theoretical values of the rate of deformation from these relations are shown in
columns 713 and &3 of Table 1.

An example of a piecewise~linear function of the defining equation which is a natural generalization of
the maximum tangential stress criterion is the relation '

5 B iyn
W = Bylo; — (1 — Moy — Aoyl®, 0y >0, > 03, M=k, 3‘;;_%7; 05 = 0y — (1 —X) 6, — A0y, Af:(BJ‘) . 8]
i 1
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In the space of the principal stresses the surface W = const in this case is an irregular prism. As By
approaches B, criterion (7) reduces to the maximum tangential stress criterion already mentioned above. In
Fig. 3 the number 4 denotes the contour W = const corresponding to relation (7), and the calculated values of
the deformation rates are shown in columns 7, and ¢, of Table 1.

It can be seen from Fig. 3 and Table 1 that all the four types of relations (4)-(7) represented there in

the region of the stressed states, corresponding to different combinations of tension (compression) ~twisting,
"are close to one another, and it is impossible to establish the advantage of any of them from these experi-

ments. Moreover, relations (4) and (6), which represent a generalization of the Mises criterion due to the in-
troduction of either the first invariant I; or the third invariant S; respectively, give practically the same re-
sults for this region of the stressed states. The same applies to relations (5) and (7), which generalize the
maximum shear criterion in a similar way. We would expect a big difference between them in regions of
other stress states.

The relations W = ¢(oe) represented above, describing the steady-state creep processes, canalsobe
generalized to the case of softening. We will assume, as in the case of an isotropic medium [19], that the
damage to the material leading to its softening is directly proportional fo the value of the work dissipated in

t
irreversible deformations A = [ 0ijnij dt. Using the methods developed in [19] we will write any of the rela-
0

tions (4)-(7) in the form

A:_-n ¢ (Ge)

W= —4m @®)

with the addition of the flow law corresponding to each of the relations (4)-~(7). For example, as it applies to
relation (4) we have

(P(U?) ) [B 1+Il/01)+B (1—I1/6t)101

In particular, for pure tension and pure compression we obtain

A™B g" A™B o
21 _ x "2
W = _—_——(A* L and W = ——————(A% — . )
In Fig. 4 the points 1 represent the results of experiment on creep to fracture for pure tension with
o = 21 kg/mm?, from which, using the method described in [19], we determine the deficient characteristics

(assuming that they are independent of the form of the stressed state)
=10 kg/ mm’, m =2, (10)

The continuous line represents the theoretical diagram from the first of relations (9), and points 2 represent
the results of experiment for pure compression with overloading. The values of the compression stresses ¢
kg /mm? and the duration of the action Aty of each of them are given in Table 2. The continuous line repre-
sents the calculated diagram obtained from the second of relations (9), with the same characteristics (10), ob-
tained from experiments on tension.

In Fig. 5 the points represent the results of two experiments on tension with twisting for 01 =21.1
kg/mm? (o— 19.49 kg/mm?, and 7 = 4.66 kg/mm?) and ¢j = 18.05 kg/mm? (¢ = 15.63 kg/mm?, and 7 =
5.21 kg/mm?). The ratios of the creep deformation increments were kept unchanged during the experiment
practically up to fracture, and had the values Ae/Ay = 1.48 for the first and Ae/Ay = 1.1 for the second,
which is quite close to the corresponding values of the ratios ¢/37. The countinuous and dashed curves show
the theoretical diagrams from (8) with ¢ (ge) specified by relations (6) and (7), respectively.
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TABLE 2

309

At h 185 l 262 226 134 63

g, kg/ 15 16,5 18 19,5 21 l 23.5
mme

It follows from Figs. 4 and 5 that as in the case of the creep of isotropic media taking softening and
fracture info account, in media with different properties for tension and compression the defining equation (8)
can be written in the form W = ¢(oe) ¥ (A), where all the differences in the behavior of the material are re-
flected in the function ¢(ce).

t
The quantity A = ({ oijNij dt is an isotropic softening parameter which with sufficient accuracy for

practical purposes can be assumed to be independent of the shape of the stressed state and can be found, as
in the case of an isotropic material, by experiments on strefching.

All the relations (4)—(7) given above and the corresponding generalizations to the case of softening were
constructed taking into account the characteristics of the material obtained only from experiments on pure
tension or pure compression. It can be seen that these relations assume a monotonic increase in the values
of i or T,y when the stressed state changes from pure tension to twisting, and further to compression along
the contour W = const. Otherwise when ¢j = const the intensity of the process in stretching W will be
greater than in twisting W, and greater than in compression, i.e., it is assumed that the situation repre~
sented in Fig. 1 for VT-9 material is realized. In fact the inequality W' > W%> W~ is not always satisfied.
Thus, it can be seen from Fig. 2 that for OT-4 material creep is estimated in the form of the inequality w* =
WY > W™ for the same values of oj in tension, twisting, and compression. We can give an example when the
values of the processes during shear W° even lie outside the range of W~ and W', i.e., we have W™ <W" <
wo [14]. This fact is obviously a specific feature of materials possessing different properties for tension and
compression: The shear characteristics of the material must be regarded as independent "certificate data"
and the defining equations must be constructed on the basis of three characteristics: tension, compression,
and shear. In this sense relations (4)-(7) given above must be regarded as a first approximation.
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LOWER LIMIT TO THE STRENGTH OF SURFACE

FORCES IN THE CASE OF PLANE STRAIN OF

AN IDEAL RIGID-PLASTIC MEDIUM

A. E. Alekseev UDC 539.214;539.374

A lower limit to the strength of surface forces based on the use of a statically permissible stress field

follows from the extremum theorems of an ideal rigid-plastic medium [1]. It is also known that the stress
field in a rigid-plastic medium with a convex plasticity condition is unique in those zones in which the de-
formation rates are different from zero [2]. It is shown in this paper that there exists for the class of prob-
lems in which a functional correspornding to the lower limit of the strength of the external surface forces is
nonidentically equal fo a constant on a set of statically permissible stress fields a ‘stress field which yields
a maximum of this functional.

1. Let Q be a region with a piecewise~continuous boundary S on the (x, y) plane, and let mes(Q) < «.

A stress field (ox, oy, T) whlch is continuous and continuously differentiable. satisfies the equilibrium con-
ditions in Q

et ay +fe=0, 5=+ ,,;’ +fy="0, (L.1)

and the boundary conditions on part of the boundary S;

Op = an;zc -+ Gyn§ + 21:”-“”‘!/ = g(S)'
Tn = (0y — 02) iy + 7 (2 — 1) = R (S) @.2)

and does not violate the plasticity conditionin @ = @ + S,

S~ U< .3)

is called statically permissible.

A velocity field (u, v) which satisfies the incompressibility condition in @
Gu o g (1.4)

ox cy

and the boundary conditions on the part of the boundary Sy = S —§;

u = uy(S), v = vy(I) (1.5)
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